NITROGEN BRIDGEHEAD COMPOUNDS PART 21¹. PREPARATION OF NEW QUATERNARY 2,3a,6a-TRIAZAPHENALENIUM SALTS

István Bitter^{al}, Béla Pete^b, István Hermecz^b, Gábor Tóth^{a2}, Kálmán Simon^b Mátyás Czugler^C, Zoltán Mészáros^b

al Technical University, Department of Organic Chemistry and Technology, H-1111 Budapest, a2 NMR Laboratory of the Institute for General and Analytical Chemistry, H-1111 Budapest, b CHINOIN Pharmaceutical and Chemical Works, H-1325 Budapest POB. 110, Hungary, c Central Research Institute of Chemistry, Hungarian Academy of Sciences, Budapest-114, POB. 17, H-1525 Hungary

<u>Summary</u>: The first representatives of a new ring system, the 2,3a,6a-triazaphenalenium quaternary salts are prepared by the cycloaddition of tetrahydro-4H-pyrido[1,2-a]pyrimidin--4-ones containing an α -chloroenamine moiety with azomethines.

Earlier we have reported² that 6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidin-4-ones (<u>1</u>) contain an active methylene group in position 9. Numerous electrophilic reactions have been accomplished on this site of the molecule, e.g. halogenation³, diazonium coupling⁴, acylation with isocyanates⁵ and reactive iminium chlorides⁶. From pharmacological considerations we aimed to bring about a new ring between the N-1 and C-9 atoms.

For this purpose compounds 2, derived from 1 and phosgeneiminium-chloride⁶, proved to be convenient starting materials. Compounds 2 as amide chlorides generally are versatile starting materials for different reactions e.g. by loss of HCl they can smoothly be transformed into α -chloroenamines 3 which are expected to take part in cycloaddition reactions. Similar cycloadditions of α -chloroenamines were thoroughly investigated by Viehe and his co-workers⁷ in the last decade. They observed the cycloadditions of simple α -chloroenamines with olefines, acetylenes, nitriles and azomethines.

These results tempted us to accomplish similar cycloaddition reactions with heterocyclic enamines of type 3. We failed to carry out cyclisation reactions with C=C double bonds but our attempts were successful in the case of aldimines and ketimines. It has turned out that the cyclisation of α -chloroenamines 3 with the imines 4 takes place under mild conditions, at room temperature in solvents such as CHCl₃ or MeCN. All of the cycloaddition products obtained in MeCN at 80^oC are well-defined salt-like compounds of pale yellow colour, soluble in water and polar organic solvents.

For the structure of the products a bicyclic form <u>5</u> and tricyclic forms <u>6</u> and <u>7</u> can be considered. To prove the structure ¹H,¹³C nmr studies and X-ray investigations were carried out. ¹H nmr was not sufficient to distinguish between the structures, as for instance in the case of the product obtained from <u>3a</u> and <u>4a</u> the singlets appearing at 8.34 and 9.72 ppm can be assigned to H-3 and H-4 protons^{8a} of the tricyclic products (<u>6a</u> or <u>7a</u>), but also to H-2 and H-3' protons^{8b} of compound <u>5a</u>. Proof for the cyclised product was afforded by the ¹³C nmr where the signal of C-3 appears at 75 ppm affirming its sp³ character⁹. In the cyclisation reaction a second asymmetric centre is formed in position <u>3</u> thus diastereomers <u>6</u> and <u>7</u> are to be expected. The products obtained under the above reaction conditions seemed to consist of one isomer according to ¹H and ¹³C nmr, but these spectra did not allow configurational distinction. X-ray investigation of the product of <u>3b</u> and <u>4a</u> showed the trans structure¹⁰, 6c (see Fig.).

¹H nmr Chemical shifts, (intensity) ppm JEOL FX-100

solvent $CDCl_3 \delta(TMS) = 0$

Com- pounds	Me-7	H~7	NMe2	NMe	Ar-3	H-3 or Me	H-4	COOEt or Ph-5		y[%]	mp[^O C]	
<u>6</u> a	1.28d (3H)	5.Om (1H)	3.19s (6H)	3.80s (3H)	7.2m (5H)	8.34s (1H)	9.73s (1H)	4.30q (2H)	1.38t (3H)	93	233	
<u>7</u> a*	1.18d (3H)	5.0m (1H)	3.13s (6H)	3.76s (3H)	7.2m (5H)	8.29s (1H)	9.78s (1H)	4.29q (2H)	1.38t (3H)	no isola	t ated	
<u>6</u> b	1.30d (3H)	5.Om (1H)	3.37,3.32s (6H)	3.47s (3H)	7.2m (5H)	2.37s (3H)	8.64s (1H)	4.36q (2H)	1.40t (3H)	91	207	
<u>6</u> c	1.33d (3H)	4.9m (1H)	3.26s (6H)	3.64s (3H)	7.3m (5H)	7.56s (1H)	9.35s (1H)	-	-	93	252	
<u>6</u> d	1.30d (3H)	4.9m (1H)	3.08s (6H)	3.70s (3H)	7.2m (5H)	8.07s (1H)	9.12s (1H)	7.4m (5H)		86	170	

¹³ C nr	nr Chem	ical shi	ifts,	JEOL FX-100				$solvent=CDCl_3 \delta(TMS)=0 ppm$					
Com- pounds	C-1	NMe2	Me-2	C-3	C-4	C-5	C-6	C-7	C-8	C-9	C-9a	С-9Ь	
6a	148.9	42.6	42.6	75.4	148.9	107.0	161.7	47.0	25.7	18.9	86.2	154.9	
<u>7</u> a*	150.4	42.9	42.9	75.7	148.2	107.8	161.7	48.2	24.8	20.4	86.1	155.1	
<u>/</u> a* [*] signa	150.4 ls assig	42.9 gned by	42.9 adding	/5./ 6a to	148.2 the solu	107.8 tion com	161./ ntaining	48.2 <u>6</u> a and	24.8 <u>7</u> a in	20.4 a rat	86.1 io 1:1	155.1	

In order to obtain some information on the mechanism of the cyclisation we have accomplished the reaction of $\underline{3}a$ and $\underline{4}a$ in nmr tube at $25^{\circ}C$. The expected pathway is the quaternisation of the imine followed by the nucleophilic attack of the ring nitrogen atom on the iminium carbon but a concerted mechanism could not be excluded either. We have established that the tricyclic compound forms stepwise: the first step leads very quickly to the quaternised molecule $\underline{5}a$ which than cyclises to $\underline{6}a$ and $\underline{7}a$ with a half-period of about one hour (see Table below)

Characteristic 1 H nmr signals* of the reaction mixture of <u>3</u>a and <u>4</u>a in CDCl₃ at 25^oC at different times JEOL FX-100

Compds Time(min)	<u>3</u> a		4a		5a				6a and 7a				
	H-2	NMe ₂	СН	NMe	H-3'	H-2	NMe	NMe2	H-3	H-4	NMe	NMe2	
0	8.48	3.03	8.13	3.42	-	_	-	-	-	-	-	-	
1	-	-	-	-	8.65	8.37	3.52	2.91	-	-	-	-	
100**	-			-	8.67	8.53	3.52	2.92	8.25	9.73	3.60	3.19	
			-						8.30	9,81	3.71	3.24	
*all signal	ls are	singlets											

**the ratio of 5a, 6a and 7a is cca 0.5:1:1

This investigation gave also an insight into the stereochemistry of the process. Under such conditions diastereomers <u>6a</u> and <u>7a</u> were formed in 1:1 ratio. When, however, this reaction mixture was heated at reflux temperature for 16 hour in acetonitrile, only diastereomer 6a was detected indicating that 7a is the kinetic while 6a is the thermodynamic product.

References and notes

- 1 Part 20: F.Fülöp, G.Bernáth, I.Hermecz and Z.Mészáros: Die Pharmazie in press
- 2 G.Náray-Szabó, I.Hermecz and Z.Mészáros: J.C.S.Perkin I. 1974, 1753.
- 3 I.Hermecz, T.Breining, Z.Mészáros, G.Tóth and I.Bitter: Heterocycles 14, 1953 (1980)
- 4 I.Hermecz, T.Breining, Z.Mészáros, A.Horváth, L.Vasvári~Debreczy, F.Dessy, Ch. De Vos and L.Rodriquez: J.Med.Chem. in press
- 5 I.Bitter, I.Hermecz, G.Tóth, P.Dvortsák, Z.Bende and Z.Mészáros: <u>Tetrahedron Letters</u> <u>1979</u>, 5033.

ORTEP diagram of 6c cation with relevant bond lengths, max. e.s.d.: 0.004 $m \AA$

- 6 I.Hermecz, I.Bitter, A.Horváth, G.Tóth and Z.Mészáros: ibid 1979, 2557.
- 7 Advances in Organic Chemistry Vol. <u>9</u>. L.Ghosez and J.Marchand-Brynaert, "Iminium Salts in Organic Chemistry" Part 1, H.Böhme and H.G.Viehe, Eds. Interscience, New York, 1976, p.421.
- 8a The H-2 signals in $\underline{1}^{11}$ and $\underline{3}$ appear between 8.2 and 8.5 ppm. We have earlier observed that this signal undergoes a downfield shift of about 1 ppm when ring annellation takes place on the N-1 atom.
- 8b On the other hand the CH-signals of simple aldiminium salts appear around 9 ppm^{12} . The time-dependent ¹H nmr investigations showed later that the H-3' signal of <u>5</u>a appears at higher field (at 8.66+0.01 ppm).
- 9 G.A.Olah and D.J.Donovan: <u>J.Org.Chem</u>. <u>43</u>, 862 (1978).
- 10 The X-ray analysis of <u>6</u>c. Crystal data: $C_{21}H_{24}ClN_50.C_2H_50H$, Fwt: 443.932. Pale yellow crystals of space group $P\bar{1}(No2)$, a=10.627(2), b=11.233(3), c=11.744(2) Å, α =111.40(3), β =110.54(3), γ =97.86(3)⁰, Z=2, (Mo-K_{α} radiation, λ =0.71073 Å), 4089 reflexions were collected on an ENRAF-NONIUS CAD4 diffractometer. The structure has been established by direct methods and refined by anisotropic full matrix least-squares method to a final R=0.06 for 3184 reflections [I> σ (I)]. Hydrogen atoms were located in difference map. All calculations were performed on a PDP 11/34 (64k) minicomputer using the E.N. SDP program package. Relevant data are deposited (Tetrahedron Letters <u>1978</u>, 3081).
- 11 G.Tóth, I.Hermecz and Z.Mészáros: J.Heterocyclic Chem. 16, 1181 (1979).
- 12 G.A.Olah and P.Kreienbühl: J.Amer.Chem.Soc. 89, 4756 (1967).

(Received in UK 10 May 1982)